
Big objects are Salesforce's take on NoSQL (although it works just like common SQL). It allows large
data storage on Salesforce's servers. Ideal for Big Data and compliance scenarios.

Sample scenario - store all field changes for an object

Big Objects

In this scenario, the customer wants, for whatever reason, to track changes of all the fields in a
single record. Salesforce provides the default field tracking, but it is available for only twenty fields
per object. If this object we are talking about has more, then it is impossible to solve it with the
standard, declarative tools.

Big objects are the ideal candidate for this, because we are talking about data that users probably
don't need to report (big objects do not support reporting), there's a change that it is a lot of data
(if the record is changed frequently), and possibly there's a legal reason for keeping those changes
stored (compliance).

So to do that we'll need a trigger on the object, running preferably on the after update trigger
event. At this point the record is already saved but the transaction is not yet committed to the
database, so the changes were made and we get the difference using Trigger.oldMap to get the old
version of the changed records.

After iterating through all the fields on the object, we check for differences, and for each one we
instantiate a new big object. When the iteration ends we insert them immediately (using
Database.insertImmediate()).

In this configuration, the big object's index would be the related record's Id, the field that was
modified and the date/time stamp of the change (depending on requirements, one might want to
spend some time thinking if it is best to have the timestamp before the field name). This way, if we
wanted to display the data in a Lightning Component, for example, we could query the specific
record data synchronously in Apex because of the indices created:

Sample scenario - store all
field changes for an object

SELECT

 RecordId__c,

 Field__c,

 Timestamp__c,

 OldValue__c,

 NewValue__c

FROM ObjectHistory__b

WHERE RecordId__c = :theRecordId

