
An attempt to help you not delete your production database

1 - Data Migrations Checklist
2 - Data Migration Step-by-step - Before Loading
3 - Data Migration Step-by-step - Loading

Data Migration Best
Practices

The following is a semi-profanity-ridden attempt at explaining one way to do data migrations while
following best practices. It is rather long and laced with colorful language. If you have read it
already, or if you want to avoid the profanity, you can consult the following checklist in the
beautiful table below.

Note that all elements are considered mandatory.

As a quick note, and a reminder even if you've read the whole version:

If you're doing data migrations, either use a script to modify the source files and save the edited
version, or use excel workbooks that open the source file and then save the edited result
elsewhere. Yes, even if the source is an excel file.

Why? Because sources change. People forget stuff, files aren't well formatted, shit gets broken, and
people are human - meaning that one-time data import is actually going to be done multiple times.
Edit the source file, and get to do everything all over again. Use scripts or workbooks to do the
transformations ? Point that to the new source file and BAM Bob's your uncle.

Scripts you might want to use:

OpenRefine
SFXD's PSCSV
Salesforce's official Data Migration Tool for cross-org data loading
Amaxa for related objects, done by David Reed

Or, if you prefer excel, open a blank workbook, Import the source file via the "data" ribbon tab,
select "from text/csv" (or whatever matches based on your source type), then save it as both:

the construction excel,
a NEW csv file after doing your changes in formula columns.

That way when you change the source file you can just open the construction book again and
resave.

Action Completed?

DO YOU HAVE A BACKUP

Is it UTF-8 encoded

1 - Data Migrations Checklist

DO NOT MODIFY SOURCE DATA FILES, EVER.

http://openrefine.org/
https://github.com/SFXD/PSCSV
https://github.com/forcedotcom/Data-Migration-Tool
https://gitlab.com/davidmreed/amaxa

Did you check it is readable and well formatted

Does it have carriage returns stored as carriage returns,
not as spaces

Is it up to date

Do you have a mapping for every object and field

Did you determine an ExternalID for each object

Did you determine source of truth (whether to overwrite or
not) for reach field

Did the client sign off on the mapping

Do you have the source data

Is it in a format your tool can read

Are dates and date-times well formatted (yyyy-mm-dd ||
yyyy-mm-ddT00:00:00z) and are times exported in UTC

Are field lengths respected (emails not longer than 80
chars, Names not longer than 40, etc)

Do numbers have the right separators

Do all tables have the required data for loading (Account
Name, Contact Last Name, etc etc etc)

Do all fields that have special characters or
carriage returns have leading and trailing
qualifiers (")

Do all records have an external Id

Did you do a dummy load with only one field mapped to
make your sure tool can read the entire file

Are you doing transformations

Did you document them all

Did you automate them so you can run them again with a
click

Did you read the LDV guide if you are loading more than
1M records

Did you activate validation rules bypass

Did you check all automations to deactivate any that
should be, including email alerts

Did you warn the client about when you would do the data
load

Did you warn the client about how long the data load
would take

--------- run the migration -----------

Did you reactivate all automations

Did you remove validation rule bypass

Did you tell the client you were done and they could check

Did you check the quality of the data

You're going to have to map data from various sources into Salesforce. IT'S THAT BIG
MIGRATION TIME.

Well let's make sure you don't have to do it again in two days because data is missing, or delete
production data.

If you delete your data, and the amount deleted is bigger than what is in the recycle bin, if will be
deleted forever. You could try restoring it via Workbench, praying that the automated Salesforce
jobs haven't wiped your data yet.
If you update data, the moment the update hits the database (the DML) is done, the old data is
lost. Forever.

If you don't have a backup, you could try seeing if you turned on field history.

If worst comes to worst you can pay 10 000€ (not joking, see here) to Salesforce to restore your
data. Did I mention that Salesforce would give you a CSV extract of the data you had in Salesforce
? Yeah they don't restore the org for you. You'd still need to restore it table per table with a data
loading tool.

But let's try to avoid these situations, by following these steps. These steps apply to any massive
data load, but especially in case of deletions.

2 - Data Migration Step-by-
step - Before Loading
Introduction

Salesforce does not back up your data.

GENERAL DATA OPERATIONS STUFF
Tools

https://help.salesforce.com/apex/HTViewSolution?id=000003594

Amaxa is awesome and handles objects that are related to one another. It's free and awesome.
Jitterbit is like Dataloader but better. It's free. It's getting old though, and some of the newer stuff
won't work like Time fields.
Talend requires some tinkering but knowing it will allow you to migrate from almost anything, to
almost anything.
Hell you can even use SFDX to do data migrations.

But yeah don't use dataloader. Even Dataloader.io is better, and that's a paid solution. Yes I would
recommend you literally pay rather than use Dataloader.

If you MUST use dataloader, EXPORT THE MAPPINGS YOU ARE DOING. You can find how to do so in
the data loader user guide: https://developer.salesforce.com/docs/atlas.en-
us.dataLoader.meta/dataLoader/data_loader.htm

If you are loading a big amount of data or the org is mature, read this document entirely before
doing anything. LDV starts at a few million records in general, or several gigabytes of data. Even if
you don't need this right now, reading it should be best practice in general.

Yes, read the whole thing. The success of the project depends on it, and the document is quite
short.

Do not use Data Loader if you can avoid it. If you tried doing a full data migration with
Dataloader, you will not be helped. By this I mean I will laugh at you and go back to drinking
coffee. Dataloader is a BAD tool.

Even if you think you will do a data load only once, the reality is you will do it multiple times.
Plus, for documentation, having the mapping file is best practice anyway. Always export the
mapping, or make sure it is reusable without rebuilding it, whatever the tool you use.

Volume

Deletions
If you delete data in prod without a backup, this is bad.
If the data backup was not checked, this is bad.
If you did not check automations before deleting, this is also bad.

https://gitlab.com/davidmreed/amaxa
https://www.jitterbit.com/solutions/salesforce-integration/salesforce-data-loader/
https://www.talend.com/
https://resources.docs.salesforce.com/sfdc/pdf/salesforce_large_data_volumes_bp.pdf

Seriously, before deleting ANYTHING, EVER:

get backup
check automations
check backup is valid.

For Admins or Consultants: you should avoid mapping the data yourself. Any data mapping you do
should be with someone from the end-user's who can understand you are saying. If no one like this
is available, spend time with a business operative so you can do the mapping and make them sign
off on it.

The client signing off on the mapping is drastically important, as this will impact the success of the
data load, AND what happens if you do not successfully load it - or if the client realizes they forgot
something.

Basic operations for a data mapping are as follow:

study Source and target data model
establish mapping from table to table, field to field, or both if necessary.
for each table and field, establish Source of Truth, meaning which data should take
priority if conflicts exist
establish an ExternalId from all systems to ensure data mapping is correct
define which users can see what data. Update permissions if needed.

Data needs to be extracted from source system. This can be via API, an ETL, a simple CSV extract,
etc. Note that in general it is better if storing data as CSV can be avoided - ideally you should do a
point-to-point load which simply transforms the data - but as most clients can only extract csv, the
following best practices apply:

Verify Data Format
Date format yyyy-mm-dd
DateTime format yyyy-mm-ddT00:00:00z
Emails not longer than 80 char
Text containing carriage returns is qualified by "
Other field-specific verifications re. length and separators for text, numbers, etc.

Verify Table integrity
Check that all tables have basic data for records:

LastName, Account for Contact

Data Mapping

Data retrieval

Name for Account
Any other system mandatory fields

Check that all records have the agreed-upon external Ids
Verify Parsing
Do a dummy load to ensure that the full data extracted can be mapped and parsed by the
selected automation tool

You should already have created External Ids on every table, if you are upserting data.
If not, do so now.
DO NOT match the data in excel.

Yes, INDEX(MATCH()) is a beautiful tool. No, no one wants you to spend hours doing that when you
could be doing other stuff, like drinking a cold beer.

Store IDs of the external system in the target tables, in the ExternalId field. Then use that when
recreating lookup relationships to find the records.

This saves time, avoids you doing a wrong matching, and best of all, if the source data changes,
you can just run the data load operation again on the new file, without spending hours matching
IDs.

Data Matching

If you're using VLOOKUP() in Excel, stop. Read up on how to use INDEX(MATCH()). You will
save time, the results will be better, and you will thank yourself later. Only thing to
remember is to always add "0" as a third parameter to "MATCH" so it forces exact results.

1. Login to Prod. Is there a weekly backup running, encoded as UTF-8, in Setup > Data
Export

Nope
Select encoding UTF-8 and click "Export Now". This will take hours.
Turn that weekly stuff on.
Make sure the client KNOWS it's on.
Make sure they have a strategy for downloading the ZIP file that is generated by the
extract weekly.
Yup

Is it UTF-8 and has run in the last 48 hours ?
Yup
Confer with the client to see if additional backup files are needed.
Otherwise, you're good.
Nope
If the export isn't UTF-8, it's worthless.
If it's more than 48h old, confer with the client to see if additional backup
files are needed. In all cases, you should consider doing a new, manual
export.

SERIOUSLY MAKE SURE YOU CHANGE THE ENCODING. Salesforce
has some dumb rule of not defaulting to UTF-8. YOU NEED UTF-8.
Accents and ḍîáꞓȑîȶîꞓs exist. Turns out people like accents and non-
roman alphabets, who knew?

If Data Export is not an option because it has run too recently, or because the
encoding was wrong, you can also do your export by using whatever too you
want to Query all the relevant tables. Remember to set UTF-8 as the encoding
on both export and import.

2. Check the org code and automation
Seriously, look over all triggers that can fire when you upload the data.
You don't want to be that consultant that sent a notification email to 50000 people.
Just check the triggers, WFs, PBs, and see what they do.
If you can't read triggers, ask a dev to help you.
Yes, Check the Workflows and Process Builders too. They can send Emails as well.

3 - Data Migration Step-by-
step - Loading
FIRST STEPS

Check Process Builders again. Are there a lot that are firing on an object you are
loading ? Make note of that for later, you may have to deactivate them.

3. Check data volume.
Is there enough space in the org to accommodate the extra data ? (this should be
pre-project checks, but check it again)
Are volumes to load enough to cause problems API-call wise ?
If so, you may need to consider using the BULK jobs instead of normal operations
In case data volumes are REALLY big, you will need to abide by LDV (large data
volume) best practices, including not doing upserts, defering sharing calculations,
and grouping records by Parent record and owner before uploading. Full list of these
is available in the pdf linked above and here.

Before creating a job, ask yourself which job type is best.

Upsert is great but is very resource intensive, and is more prone to RECORD_LOCK than other
operation types. It also takes longer to complete.
Maybe think about using the BULK Api.
In all cases, study what operation you do and make sure it is the right one.
Once that is done...

You are able to create insert, upsert, query and deletion jobs, and change select parts of it. That's
because you are using a real data loading tool.

This is important because this means you can:

Create a new Sandbox
In whatever tool you're using, create the operations you will do, and name them so you
know in which order you need to trigger them.
Prepare each job, point them to a sandbox.
Do a dummy load in sandbox. Make sure to set the start line to something near the end so
you don't clog the sandbox up with all the data.
Make sure everything looks fine.

If something fails, you correct the TRANSFORMATION, not the file, except in cases where it would
be prohibitively long to do so. Meaning if you have to redo the load, you can run the same scripts
you did before to have a nice CSV to upload.

PREPARING THE JOBS

GETTING READY TO DO THAT DATA OPERATION

https://resources.docs.salesforce.com/sfdc/pdf/salesforce_large_data_volumes_bp.pdf

You've got backups of every single table in the Production org.
Even if you KNOW you do, you open the backups and check they are not corrupt or unreadable.
Untested backups are no backups.
You know what all automations are going to do if you leave them on.
You talked with the client about possible impacts, and the client is ready to check the data after
you finish your operations.
You set up, with the client, a timeframe in which to do the data operation.
If the data operation impacts tables that users work on normally, you freeze all those users during
that timeframe.

Remember to deactivate any PB, WF, APEX that can impact the migration. You didn't study them
just to forget them.

If this is an LDV job, take into account any considerations listed above.

1. Go to your tool and edit the Sandbox jobs.
2. Edit the job Login to point to production
3. Save all the jobs.
4. You run, in order, the jobs you prepared.

When the number of failures is low enough, study the failure files, take any corrective action
necessary, then use those files as a new source for a new data load operation.

Continue this loop until the number of rejects is tolerable.

This will ensure that if some reason you need to redo the entire operation, you can take the same
steps in a much easier fashion.

Once you are done, take the failure files, study them, and prepare a recap email detailing failures
and why they failed. It's their data, they have a right to know.

Make sure everything looks fine, that you carried everything over.

This may sound stupid but warn your client, the PM, the end users that you're doing a data
load. There's nothing worse than losing data or seeing stuff change without knowing why.
Make sure key stakeholders are aware of the operation, the start time, and the estimated
end time. Plus, you need them to check the data afterwards to ensure it's fine.

DATA OPERATION

POST-MIGRATION

Warn their PM that the migration is done and request testing from their side.
If you deactivated Workflows or PBs or something so the migration passes, ACTIVATE
THEM BACK AGAIN.
Unfreeze users if needed.

Identify WTF is causing data to be wrong.
Fix that.
Get your backup, restore data to where it was before the fuckup. Ideally, only restore
affected fields. If needed, restore everything.
Redo the data load if needed.

Go drink champagne.

IF SHIT DOESN'T LOOK RIGHT
You have a backup. Don't panic.

