
Conventions about validation rules, naming, creation, etc

Validation Rule Metadata Conventions
Validation rules writing conventions

Validation Rule
Conventions

1. The Validation Rule Name MUST try to explain in a concise manner what the validation
rule prevents. Note that conciseness trumps clarity for this field.

2. All validation Rules API names MUST be written in PascalCase.
3. Validation Rules SHOULD NOT contain an underscore in the fields name, except where

explicitly defined otherwise in these conventions.
4. A Validation Rule SHALL always start by a shorthand of the object name (example: ACC ,

then the string VR , followed by a number corresponding to the number of validation rules
on the triggering Object, followed by an underscore.

5. The Validation Rule Error Message MUST contain an error code indicating the number of
the Validation Rule, in the format [VRXX] , XX being the Validation Rule Number.1

6. Validation Rules MUST have a description, where the description details the Business Use
Case that is addressed by the VR. A Description SHALL NOT contain technical
descriptions of what triggers the VR - the Validation Rule itself SHOULD be written in such
a manner as to be clearly readable.

1 While including an error code in a user displayed message may be seen as strange, this will allow
any admin or consultant to find exactly which validation rule is causing problems when user need
only communicate the end code for debugging purposes.

Validation Rule Metadata
Conventions

https://en.wikipedia.org/wiki/PascalCase

1. All Validation Rules MUST contain a Bypass2 Rule check.
2. Wherever possible, a Consultant SHOULD use operators over functions.
3. All possible instances of IF() SHOULD be replaced by CASE()
4. Referencing other formula fields should be avoided at all cost.
5. In all instances, ISBLANK() should be used instead of ISNULL , as per this link.
6. Validation Rules MUST NOT be triggered in a cascading manner.1

Examples
Name Formula Error Message Description

OPP_VR01_CancelReason

!$Setup.Bypasses__c.IsBypas
sVR__c &&
TEXT(Cancellationreason__c)
="Other" &&
ISBLANK(OtherCancellationRe
ason__c)

If you select "other" as a
cancellation reason, you
must fill out the details of
that reason. [OPP_VR01]

Prevents selecting "other"
less reason without putting
a comment in. [OPP_VR01]

OPP_VR02_NoApprovalCant
Reserve

!$Setup.Bypasses__c.IsBypas
sVR__c &&
!IsApproved__c &&
(
ISPICKVAL(Status__c,"Approv
ed - CC ") ||

ISPICKVAL(Status__c,"Approv
ed - Client") ||

ISPICKVAL(Status__c,"Paid")
)

The status cannot advance
further if it is not approved.
[OPP_VR02]

The status cannot advance
further if it is not approved.
[OPP_VR02]

1 Cascading Validation Rules are defined as VRs that trigger when another VR is triggered.
Example: A field is mandatory if the status is Lost, but the field cannot contain less than 5
characters. Doing two validation rules which would trigger one another would result in a user first
seeing that the field is mandatory, then saving again, and being presented with the second error.
In this case, the second error should be displayed as soon as the first criteria is met.

2 See main Bypasses page for more info on the topic

Validation rules writing
conventions

https://help.salesforce.com/apex/HTViewHelpDoc?id=customize_functions.htm&language=en#ISBLANKDef
https://wiki.sfxd.org/books/best-practices/page/bypasses

