
This chapter explores the fundamental considerations of Salesforce deployments within the context
of consulting projects. It addresses:

Why Deploy: The importance and benefits of deploying Salesforce metadata throughout
the project lifecycle, from the build phase to UAT to GoLive.
When: When in the project timeline should deployments be planned and executed to
ensure smooth progress and mitigate risks. (Hint - it's often, but not in every org)
By Whom: Roles and responsibilities involved in the deployment process, such as
consultants committing changes, architects reviewing commits and system elements, and
release managers overseeing and executing deployments.

In traditional software development, deployments often occur to migrate changes between
environments for testing or production releases. However, in the context of Continuous Integration
(CI) and Salesforce development, deployments are just synchronization checkpoints for the
application, irrelevant of the organization.

Said differently, in CI/CD Deployments are just a way to push commits to the environments that
require them.

Chapter 1: The Why, When
and By Whom

Why do I Deploy ?

CI deployments are frequent, automated, and tied closely to the development
cycle.

Deployments are never the focus in CI/CD, and what is important is instead the
commits and the way that they tie into the project management - ideally into a
ticket for each commit.

In software development, a commit is the action of saving changes to a version-controlled
repository. It captures specific modifications to files, accompanied by a descriptive message.
Commits are atomic, meaning changes are applied together as a single unit, ensuring
version control, traceability of changes, and collaboration among team members.

So if deployments are just here to sync commits...

Commits should pretty much be done "as soon as they are useful", which often means you have
fulfilled one of the following conditions:

you have finished working a ticket;
you have finished configuring or coding a self-contained logic, business domain, or
functional domain;
you have finished correcting something that you want to be able to revert easily;
you have finished a hotfix;
you have finished a feature.

This will allow you to pull your changes from the org, commit your changes referencing the ticket
number in the Commit Message, and then push to the repository.
This will allow others to work on the same repository without issues and to easily find and revert
changes if required.

To tie back to our introduction - this forces a division of work into Work Items, Tickets, or whatever
other Agile-ism you use internally, and the project management level.

Commits are part of using Git.
Git is a distributed version control system used to track changes in source code during
software development. It is free and widely used, within Salesforce and elsewhere.

Why do I commit ?
As soon as a commit is useful

Take the Salesforce-built "Devops Center" for example.
They tie every commit to a Work Item and allow you to chose which elements from the
metadata should be added to the commit. They then ask you to add a quick description and
you're done.
This is the same logic we apply to tickets in the above description.

If you're wondering "why not just use DevOps Center", the answer is generally "you
definitely should if you can, but you sometimes can't because it is proprietary and it has
limitations you can't work around". Namely the fact that it only uses GitHub for now (2024-
06-19).

http://rogerdudler.github.io/git-guide/
https://help.salesforce.com/s/articleView?language=en_US&id=sf.devops_center_overview.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.devops_center_work_item_changes_tab.htm&type=5

This is because....

Pretty much all the time, but not everywhere.

In Salesforce CI/CD, the two main points of complexity in your existing pipeline are going to be:

The first integration of a commit into the pipeline
The merging of multiple commits, especially if you have the unfortunate situation where
multiple people work in the same org.

The reasons for this are similar but different.

In the case of the first integration of a commit into the pipeline, most of the time, things should be
completely fine. The problem is one that everyone in the Salesforce space knows very well. The
Metadata API sucks. And sadly, SFDX... also isn't perfect.
So sometimes, you might do everything right, but the MDAPI will throw some file or some setting
that while valid in output, is invalid in input. Meaning Salesforce happily gives you something you
can't deploy.
If this happens, you will get an error when you first try to integrate your commit to an org. This is
why some pre-merge checks ensure that the commit you did can be deployed back to the org.

In the case of merging multiple commits, the reasons is also that the Metadata API sucks. It will
answer the same calls with metadata that is not ordered the same way within the same file, which
will lead Git to think there's tons-o-changes... Except not really. This is mostly fine as long as you
don't have to merge your work with someone else's where they worked on the same piece of
metadata - if so, there is a non-zero chance that the automated merging will fail.

In both cases, the answer is "ask your senior how to solve this if the pipeline errors out". In both
cases also, the pipeline should be setup to cover these cases and error out gracefully.

"What does that have to do with when I deploy? Like didn't you get lost somewhere?"

DevOps makes sense when you work iteratively, probably in sprints, and when the
work to be delivered is well defined and packaged.

When do I Deploy ?

The relation is simple - you should deploy pretty much ASAP to your remote repo, and merge
frequently to the main work repository. You should also pull the remote work frequently to
ensure you are in sync with others.
Deploying to remote will run the integration checks to ensure things can be merged, and
merging will allow others to see your work. Pulling the other's work will ensure you don't
overwrite stuff.

Different people across the lifecycle of the project.

On project setup, the DevOps engineer that sets up the pipeline should deploy and setup.
For standard work, you should deploy to your own repo, and the automated system should
merge to common if all's good.
For end of sprints, the automated pipeline should deploy to QA.
For UAT, the Architect assigned to the project should run the required pipelines.

In most cases, the runs should be automatic, and key points should be covered by technical
people.

Deploying to QA or UAT should be something tied to the project management cycle and isnot
up to an individual contributor.
For example, you can deploy to QA every sprint end, and deploy to UAT once EPICs are
flagged as ready for UAT (a manual step).

Who Deploys ?

Revision #2
Created 18 June 2024 14:35:09 by Windyo
Updated 19 June 2024 11:03:53 by Windyo

