
This chapter explores how to set up your project management and version control integration,
ensuring proper tracking from requirement to deployment.

Create Base Project

Chapter 4 - Base Project
Setup

Initial Project Creation
SFDX Project Setup

sf project generate

 --name "your-project-name"

 --template standard

 --namespace "your_namespace" # if applicable

 --default-package-dir force-app

Required Project Structure
your-project-name/

├── config/

│ └── project-scratch-def.json

├── force-app/

│ └── main/

│ └── default/

├── scripts/

│ ├── apex/

│ └── soql/

├── .forceignore

├── .gitignore

.forceignore Essential Entries

.gitignore Essential Entries

├── package.json

└── sfdx-project.json

Configuration Files Setup

Standard Salesforce ignore patterns

**/.eslintrc.json

**/.prettierrc

**/.prettierignore

**/.sfdx

**/.sf

**/.vscode

**/jsconfig.json

Package directories

**/force-app/main/default/profiles

**/force-app/main/default/settings

Salesforce cache

.sf/

.sfdx/

.localdevserver/

VS Code IDE

.vscode/

System files

.DS_Store

*.log

Bitbucket Repository Integration

In Bitbucket:

Configure in Bitbucket Repository Settings:

YAML

Initial Repository Setup

- Create new repository

- Repository name: your-project-name

- Access level: Private

- Include README: Yes

- Include .gitignore: No (we'll use our own)

Linking Local Project to Remote
Repository

Initialize Git Repository

cd your-project-name

git init

git add .

git commit -m "Initial project setup"

Link to Bitbucket

git remote add origin https://bitbucket.org/your-workspace/your-project-name.git

git push -u origin main

Branch Protection Rules

Branch Permissions:

 main:

sfdx-project.json Configuration

JSON

project-scratch-def.json Base Configuration

JSON

 - Require pull request approvals

 - Minimum approvers: 2

 - Block force pushes

 develop:

 - Require pull request approvals

 - Minimum approvers: 1

 - Block force pushes

Project Configuration Files

{

 "packageDirectories": [

 {

 "path": "force-app",

 "default": true,

 "package": "your-project-name",

 "versionName": "Version 1.0",

 "versionNumber": "1.0.0.NEXT"

 }

],

 "namespace": "",

 "sourceApiVersion": "60.0"

}

{

 "orgName": "Your Project Name",

 "edition": "Enterprise",

 "features": ["EnableSetPasswordInApi"],

 "settings": {

 "lightningExperienceSettings": {

 "enableS1DesktopEnabled": true

 },

 "securitySettings": {

Run these commands to verify setup:

Bash

Create a new project
Configure the following required elements:

Epic issue type
Story issue type
Bug issue type
Task issue type
Custom fields for Salesforce metadata tracking

Text Only

 "passwordPolicies": {

 "enableSetPasswordInApi": true

 }

 }

 }

}

Post-Setup Verification

Verify SFDX project

sf project verify

Verify Git setup

git remote -v

Verify Bitbucket connection

git fetch origin

Verify branch protection

git push origin main --dry-run

JIRA Configuration

Required JIRA Workflow States

Backlog -> In Progress -> In Review -> Ready for Deploy -> Done

Link your JIRA project to Bitbucket repository
Configure repository access rights
Setup branch policies:

main - protected, requires PR
develop - protected, requires PR
feature/* - development branches
hotfix/* - emergency fixes

Stories should be:
- Independent (can be deployed alone)
- Small enough to be completed in 1-3 days
- Tagged with proper metadata types
- Linked to an Epic

Epic Link
Acceptance Criteria
Metadata Types
Development Notes
Test Cases

1. In JIRA:
Navigate to Project Settings
Enable "Development" integration
Link to Bitbucket repository

Bitbucket Integration

Work Segmentation
Story Creation Rules

Required Story Fields

Integration Setup
JIRA to Bitbucket Connection

2. In Bitbucket:
Configure branch policies
Setup automatic JIRA issue transitions
Enable smart commits

Text Only

Get the bitbucket-pipelines.yml file

Integrate it and set up the variables

Create branch from ticket
Update ticket status on commit
Link PR to ticket
Transition on successful deployment

Trigger on PR creation
Run validation suite
Deploy to appropriate environment
Update JIRA ticket status

Commit Message Format

[PROJ-123] Brief description

- Detailed changes

- Impact on existing functionality

- Related configuration

Pipeline Configuration

Automation Rules
JIRA Automation

Bitbucket Pipelines

Project Admin (JIRA + Bitbucket)
Development Team (restricted repository access)
Release Manager (deployment rights)
QA Team (environment access)

Text Only

Remember that this setup needs to be done only once per project, but maintaining the discipline of
following these structures is crucial for successful CI/CD implementation.

The key to success is ensuring that:
1. Every piece of work has a ticket
2. Every commit links to a ticket
3. Every deployment is traceable
4. All changes are reviewable

This structured approach ensures that your project management directly ties into your deployment
pipeline, making it easier to track changes and maintain quality throughout the development
lifecycle.

Security and Access
Required Team Roles

Access Matrix

Role | JIRA | Bitbucket | Salesforce

Project Admin | Admin| Admin | System Admin

Developer | Write| Write | Developer

QA | Write| Read | Read-only

Revision #2
Created 4 July 2024 15:44:44 by Windyo
Updated 7 November 2024 14:42:12 by Windyo

