
As detailed in the General Notes section, these conventions are heavily opinionated towards
maintenance and scaling in large organizations. The conventions contain:

a "common core" set of structural conventions that apply everywhere (this page!)
conventions for Record Triggered Flows specifically
conventions for Scheduled Flows specifically

Due to their nature of being triggered by the user and outside of a specific record context, Screen
Flows do not require specific structural adaptations at the moment that are not part of the common
core specifications.

Salesforce now actually warns you when you're doing this, but it still bears saying.

Flow Structural Conventions
- Common Core

Common Core Conventions
On System-Level Design
Do not do DMLs or Queries in Loops.

Simpler: No pink squares in loops.

DML is Data Manipulation Language. Basically it is what tells the database to change stuff.
DML Operations include Insert, Update, Upsert, and Delete, which you should know from
Data Loader or other such tools.

https://wiki.sfxd.org/books/best-practices/page/flow-structural-conventions-record-triggered
https://wiki.sfxd.org/books/best-practices/page/flow-structural-conventions-scheduled
https://developer.salesforce.com/docs/atlas.en-us.apexref.meta/apexref/apex_dml_section.htm

Don't do this

You really must not do this because:
it can break your Flow. Salesforce will still try to optimize your DML operations, but it will
often fail due to the changing context of the loop. This will result in you doing one query
or update per record in your loop, which will send you straight into Governor Limit
territory.
even if it doesn't break your Flow, it will be SLOW AS HELL, due to the overhead of all the
operations you're doing
it's unmaintainable at best, because trying to figure out the interaction between X
individual updates and all the possible automations you're triggering on the records you're
updating or creating is nigh impossible.

All Pink (DML or Query) elements should have Error handling

Error, or Fault Paths, are available both in Free Design mode and the Auto-Layout Mode. In
Free mode, you need to handle all possible other paths before the Fault path becomes

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_gov_limits.htm

Screen Flow? Throw a Screen, and display what situation could lead to this. Maybe also send the
Admin an email explaining what happened.

Record-triggered Flow? Throw an email to the APEX Email Exception recipients, or emit a Custom
Notification.
Hell, better yet throw that logic into a Subflow and call it from wherever.

available. In Auto-Layout mode, you can simply select Fault Path.

(Note that if you are in a sandbox with email deliverability set to System Only, regular flow
emails and email alerts will not get sent.)

https://help.salesforce.com/s/articleView?id=sf.flow_ref_elements_actions_sendemail.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.notif_builder_custom.htm&language=en_US&type=5
https://help.salesforce.com/s/articleView?id=sf.notif_builder_custom.htm&language=en_US&type=5

https://wiki.sfxd.org/uploads/images/gallery/2022-02/image-1644417882117.png

You want to supercharge your error handling? Audit Nebula Logger to see if it can suit your needs.
With proper implementation (and knowledge of how to service it, remember that installed code is
still code that requires maintenance), Nebula Logger will allow you to centralize all logs in your
organization, and have proper notification when something happens - whether in Flow, APEX, or
whatever.

The Flow engine doesn't support that well and you will have weird and confusing issues if you ever
go back to the main loop.

Handling Errors this way allows you to:
- not have your users presented with UNEXPECTED EXCEPTION - YOUR ADMIN DID THINGS
BADLY
- maybe deflect a few error messages, in case some things can be fixed by the user doing
things differently
- have a better understanding of how often Errors happen.

Don't exit loops based on decision checks

https://github.com/jongpie/NebulaLogger

Don’t do this either - always finish the loop

Issues include variables not being reset, DML errors if you do come back to the loop, and all around
general unpredictable situations.
You can still do this if you absolutely NEVER come back to the loop, but it's bad design.

A proper handling of "1 day before/after whenever", in Flow, is often via a Scheduled Flow.
Scheduled Flows execute once daily (or more if you use plugins to allow it), check conditions, and

Do not design Flows that will have long Wait elements

This is often done by Admins coming from Workflow or Process Builder space, where you
could just say "do that 1 week before contract end date" or "1 day after Opportunity
closure". This design is sadly as outdated as the tools that permitted it.
Doing this will have you exceed your Paused Interview limits, and actions just won't be
carried out.

execute based on these conditions. In the above case, you would be creating a Scheduled Flow that
:

Queries all Contract that have an End Date at TODAY()-7
Proceeds to loop over them and do whatever you need it to

When Admins start becoming great at Flows, everything looks like a Flow.
The issue with that is that sometimes, Admins will start building Flows that shouldn't be built
because Users should be using standard features (yes, I know, convincing Users to change habits
can be nigh impossible but is sometimes still the right path)... and sometimes, they will keep at
building Flows that just should be APEX instead.

APEX has more tools than Flows, as do LWCs. Sometimes, admitting that Development is necessary
is not a failure - it's just good design.

This relates to the Naming Conventions.

Flow Type Triggering Element

Record-Triggered Flows It is the Record that triggers the DML

Event-based Flows It should be a single event, as simple as possible.

Despite it not being evident in the Salesforce Builder, there is a VERY big difference between
the criteria in the Schedule Flow execution start, and an initial GET.
- Putting criteria in the Start Element has less conditions available, but effectively limits the
scope of the Flow to only these records, which is great in big environments. It also fires
One Flow Interview per Record, and then bulkifies operations at the end - so doing a GET
if you put a criteria in the Start element should be done after due consideration only.
- On the opposite, putting no criteria and relying on an initial Get does a single Flow
Interview, and so will run less effectively on huge amounts of records, but does allow you to
handle more complex selection criteria.

Do not Over-Optimize your Flows

If you are starting to hit CPU timeout errors, Flow Element Count errors, huge amounts of
slowness... You're probably trying to shove things in Flow that should be something else
instead.

On Flow-Specific Design
Flows should have one easily identifiable Triggering Element

https://wiki.sfxd.org/books/best-practices/page/flow-naming-conventions

Screen Flows

This should be either a single recordId, a single sObject
variable, or a single sObject list variable. In all cases, the
Flow that is being called should query what it needs by
itself, and output whatever is needed in its context.

Subflows

The rule can vary - it can be useful to pass multiple
collections to a Subflow in order to avoid recurring queries
on the same object. However, passing multiple single-
record variables, or single text variables, to a Subflow
generally indicates a design that is overly coupled with the
main flow and should be more abstracted.

You'll thank yourself when you have to maintain it in two years.
Descriptions should not be technical, but functional. A Consultant should be able to read your Flow
and know what it does technically. The Descriptions should therefore explain what function the
Flow provides within the given Domain (if applicable) of the configuration.

Descriptions shouldn’t be too technical.

Yes, it's possible. It's also bad practice. You should always rely on a record variable, which you
Assign values to, before using Update with "use the values from a record variable". This is mainly
for maintenance purposes (in 99% of cases you can safely ignore pink elements in maintenance to
know where something is set), but is also impactful when you do multi-record edits and you have
to manipulate the record variable and store the resulting manipulation in a record collection
variable.

Fill in the descriptions

Don't use the "Set Fields manually" part of Update elements

See "Tie each Flow to a Domain".
Initializing a lot of Record variables on run often points to you being able to split that subflow into
different functions. Passing Records as the Triggering Element, and configuration information as
variables is fine within reason.

Try to pass only one Record variable or one Record collection
to a Flow or Subflow

In the example below, the Pricebook2Id variable should be taken from the Order variable.

https://wiki.sfxd.org/uploads/images/gallery/2023-08/image-1691673305766.png
https://wiki.sfxd.org/uploads/images/gallery/2023-08/image-1691673360337.png

A Subflow that does a lot of different actions will probably be single-use, and if you need a subpart
of it in another logic, you will probably build it again, which may lead to higher technical debt.
If at all possible, each Subflow should execute a single function, within a single Domain.
Yes, this ties into "service-based architecture" - we did say Flows were code.

This is when you query a record, then fetch parent information via
{MyRecord.ParentRecord__c.SomeField__c} . While this is useful, it’s also very prone to errors

(specifically with fields like RecordType) and makes for wonky error messages if the User does not
have access to one of the intermediary records.
Do an explicit Query instead if possible, even if it is technically slower.

This is also tied to Naming Conventions. Note that in the example below, the Domain is the Object
that the Flow lives on. One might say it is redundant with the Triggering Object, except Scheduled
Flows and Screen Flows don't have this populated, and are often still linked to specific objects,
hence the explicit link.

Try to make Subflows that are reusable as possible.

Do not rely on implicit references

Tie each Flow to a Domain

https://wiki.sfxd.org/uploads/images/gallery/2022-02/image-1644417918698.png
https://en.wikipedia.org/wiki/Service-oriented_architecture

Domains are definable as Stand-alone groupings of function which have a clear
Responsible Persona.

In short, if a Flow starts in Sales (actions that are taken when an Opportunity closes for example)
and finishes in Invoicing (creates an invoice and notifies the people responsible for those invoices),
this should be two separate Flows, each tied to a single Domain.

Communication between Domains should ideally be handled
via Events

Note that the Salesforce Event bus is mostly built for External Integrations.
The amount of events we specify here is quite high, and as such on gigantic organisations it
might not be best practice to handle things this way - you might want to rely on an external
event bus instead.

That being said if you are in fact an enterprise admin I expect you are considering the best
usecase in every practice you implement, and as such this disclaimer is unnecessary.

https://trailhead.salesforce.com/content/learn/modules/ux-personas-for-salesforce/get_started_with_personas
https://wiki.sfxd.org/uploads/images/gallery/2022-02/image-1644417943258.png

Example of Event-Driven decoupling

Unless the secondary subflows are basically fully abstract methods handling inputs from any
possible Flow (like one that returns a collection from a multipicklist), you're adding complexity in
maintenance which will be costly

Avoid cascading Subflows wherein one calls another one that
call another one

Revision #14
Created 14 January 2021 10:32:16 by Windyo
Updated 28 August 2023 07:11:00 by Windyo

https://wiki.sfxd.org/uploads/images/gallery/2022-02/image-1644417931475.png

