Flow Structural Conventions
- Record-Triggered

As detailed in the General Notes section, these conventions are heavily opinionated towards
maintenance and scaling in large organizations. The conventions contain:

e a "common core" set of structural conventions that apply everywhere
e conventions for Record Triggered Flows specifically (this page!)

e conventions for Scheduled Flows specifically

These Record-Triggered Conventions expect you to be familiar with the tools at your disposal to
handle order of execution and general Flow Management, including the Flow Trigger Explorer,

Scheduled Paths, Entry Criteria (linked: a page that should document entry criteria but doesn't).

This page directly changes conventions that were emitted by SFXD in 2019, and reiterated in

2021.

This is because the platform has changed since then, and as such we are recommending
new, better, more robust way to build stuff.

If you recently used our old guides - they are still fine, we just consider this new version to be
better practice.

Record-Triggered Flow Design

Before Creating a Flow

Ensure there are no sources of automation touching the Object or
Fields

If the same field is updated in another automation, default to that automation instead, or refactor

that automation to Flow.

If the Object is used in other sources of automation, you might want to default to that as well, or
refactor that automation to Flow, unless you can ensure that both that source of automation and
the Flow you will create will not cross-impact each other.

https://wiki.sfxd.org/books/best-practices/page/flow-structural-conventions-common-core
https://wiki.sfxd.org/books/best-practices/page/flow-structural-conventions-scheduled
https://trailhead.salesforce.com/content/learn/modules/record-triggered-flows/meet-flow-trigger-explorer
https://trailhead.salesforce.com/content/learn/modules/record-triggered-flows/add-a-scheduled-task-to-your-flow
https://help.salesforce.com/s/articleView?id=sf.flow_ref_elements_start.htm&type=5

You can leverage "where is this used" in sandbox orgs to check if a field is alreadyreferenced
in a Flow - or take the HULK SMASH approach and just create a new sandbox, and try to
delete the field. If it fails deletion, it'll tell you where it is referenced.

Verify the list of existing Flows and Entry Criterias you have

You don't want to have multiple sources of the same entry criteria in Flows because it will make
management harder, and you also don't want to have multiple Flows that do almost the same thing
because of scale.

Identifying if you can refactor a Flow into a Subflow that will be called from multiple places is
best done before trying to build anything.

Ask yourself if it can't be a Scheduled Flow instead

Anything date based, anything that has wait times, anything that doesn't need to be at the instant
the record changes status but can instead wait a few hours for the flow to run - all these things can
be scheduled Flows. This will allow you to have better save times on records.

Prioritize BEFORE-save operations whenever possible

This is more efficient in every way for the database, and avoids recurring SAVE operations.

It also mostly avoid impacts from other automation sources (apart from Before-Save APEX).
Designing your Flow to have the most possible before-save elements will save you time and effort
in the long run.

Check if you need to update your bypasses

Specifically for Emails, using bypasses remains something that is important. Because sending
emails to your entire database when you're testing stuff is probably not what you want.

Consider the worst case

Do not build your system for the best user but the worst one. Ensure that faults are handled,
ensure that a suser subject to every single piece of automation still has a usable system, etc.

On the number of Flows per Object and Start Elements

e Before-Save Flows
Use as many before-save flows as you require.
You should, but do not have to, set Entry Conditions on your Flows.
Each individual Flow should be tied to a functional Domain, or a specific user story, as
you see most logical. The order of the Flows in the Flow Trigger Explorer should not
matter, as a single field should never be referenced in multiple before save flows as the

https://wiki.sfxd.org/books/best-practices/page/bypasses

target of an assignment or update.

o After-Save Flows Use one Flow for actions that should trigger without entry criteria, and
orchestrate them with Decision elements.
Use one Flow to handle Email Sends if you have multiple email actions on the Object
and need to orchestrate them.
Use as many additional flows as you require, as long as they are tied to unique
Entry Criteria.
Set the Order of the Flows manually in the Flow Trigger Explorer to ensure you know
how these elements chain together.Offload any computationally complex operation that
doesnt need to be done immediately to a scheduled path.

Entry Criteria specify when a Flow is evaluated. It is a very efficient way to avoid Flows
triggering unduly and saves a lot of CPU time. Entry Criteria however do require knowledge
of Formulas to use fully (the basic "AND" condition doesn't allow a few things that the
Formula editor does in fact handle properly), and it is important to note that the entire Flow
does not execute if the Entry Criteria isn't met, so you can't catch errors or anything.

To build open what's written above:

e Before-Save flows are very fast, generally have no impact on performance unless you do
very weird stuff, and should be easy to maintain as log as you name them properly, even
if you have multiple per object. "Tieing" a flow to a Domain or Object means by its name
and structure. You can technically do a Flow that does updates both for Sales and
Invoicing, but this is generally meh if you need to update a specific function down the line.

Logical separation of responsabilities is a topic you'll find not only here but also in a lot of
development books.

Before-Save Flows don't actually require an Update element - this is just for show and to
allow people to feel more comfortable with it. You can technically just use Assignments to
manipulate the $Record variable with the same effect. It actually used to be the only way to
do before-save, but was thought too confusing.

e After-Save flows, while more powerful, require you to do another DML operation to commit
anything you are modifying. This has a few impacts, such as the possibility to re-run
automtions if you update the record that already triggered your automation. The
suggestions we make above are based on the following:

o Few actions on records should not have entry criteria set. This allows more flows to
be present on each object without slowdowns. The limit of One flow is because it
should pretty much not exist, or be small.

o Emails sent from Objects are always stress inducing in case of data loads, and while
a proper bypass usage does not require grouping all emails in a Flow,knowing that
all email alerts are in a specific place does make maintenance easier.

o Entry-Criteria filtered Flows are quite efficient, and so do not need to be restricted in
number anymore.

o Ordering Flows manually is to avoid cases where the order of Flows is unkown, and
interaction between Flows that you ahve not identified yields either positive or
negative results that can't be reproduced without proper ordering.

o Scheduled Paths are great if you are updating related Objects, sending notifications,
or doing any other operation that isn't time-sensitive for the user.

We used to recommend a single Flow per context. This is obviously no longer the case.
This is because anything that pattern provided, other tools now provide, and do better.

The "One flow per Object pattern" was born because:

- Flows only triggered in after contexts

- Flows didn't have a way to be orchestrated between themselves

- Performance impact of Flows was huge because of the lack of entry criteria

None of that is true anymore.

The remnant of that pattern still exists in the "no entry criteria, after context, flow that has
decision nodes", so it's not completely gone.

So while the advent of Flow Trigger Explorer was one nail in the coffin for that pattern, the
real final one was actual good entry criteria logic.

Entry Criteria are awesome but are not properly disclosed either in the Flow List View, nor
the Start Element. Ensure that you follow proper Description filling so you can in fact know
how these elements work, otherwise you will need to open every single Flow to check what is
happening.

On Delayed Actions

Flows allows you to do complex queries and loops as well as schedules. As such, there is virtually
no reason to use wait elements or delayed actions, unless said waits are for a platform event, or
the delayed actions are relatively short.

Any action that is scheduled for a month in the future for example should instead set a flag on the
record, and let a Scheduled Flow evaluate the records daily to see if they fit criteria for processing.
If they do in fact fit criteria, then execute the action.

A great example of this is Birthday emails - instead of triggering an action that waits for a year, do
a Scheduled flow running daily on contacts who's birthday it is. This makes it a lot easier to debug
and see what’s going on.

Revision #4
Created 10 August 2023 11:30:39 by Windyo
Updated 21 August 2023 14:58:12 by Windyo

