
As detailed in the General Notes section, these conventions are heavily opinionated towards
maintenance and scaling in large organizations. The conventions contain:

a "common core" set of structural conventions that apply everywhere
conventions for Record Triggered Flows specifically
conventions for Scheduled Flows specifically (this page!)

As detailed in the Common Core conventions, despite it not being evident in the Salesforce Builder,
there is a VERY big difference between the criteria in the Schedule Flow execution start, and an
initial GET element in a Scheduled Flow that has no Object defined.

- Putting criteria in the Start Element has less conditions available, but effectively limits the scope
of the Flow to only these records, which is great in big environments. It also fires One Flow
Interview per Record, and then bulkifies operations at the end.

Flow Structural Conventions
- Scheduled

Scheduled Flow Design

https://wiki.sfxd.org/books/best-practices/page/flow-structural-conventions-common-core
https://wiki.sfxd.org/books/best-practices/page/flow-structural-conventions-record-triggered

- On the opposite, putting no criteria and relying on an initial Get does a single Flow Interview, and
so will run less effectively on huge amounts of records, but does allow you to handle more complex
selection criteria.

An often-done mistake is to do the above selection, say "Accounts where Active = TRUE" for
example, and then doing a Get Records afterwards, querying the accounts again, because of
habits tied to Record-Triggered Flows.
If you do this, you are effectively querying the entire list of Accounts X times, where X is the
number of Accounts in your original criteria. Which is bad.

In the first case, you should consider that there is only one record selected by the Flow,
which is populated in $Record - much like in Record-Triggered Flows.
In the second screenshot, you can see that the Choose Object is empty, but the GET is done
afterwards - $Record is as such empty, but the Get Active Accounts will generate a collection
variable containing multiple accounts, which you will need to iterate over (via a loop
element) to handle the different cases

Revision #3
Created 10 August 2023 13:17:21 by Windyo
Updated 28 August 2023 07:12:20 by Windyo

